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Abstract

Controlling dissolved nitrogen is critical to meeting increasingly stringent steel quality
targets, yet the variable kinetics of gas absorption and removal across production stages
complicate real-time decision-making. Leveraging a total of 291 metal samples, the research
applied ordinary least squares (OLS) regression, enhanced by cointegration diagnostics,
to develop four stage-specific models covering pig iron after desulfurization, crude steel
in the basic oxygen furnace (BOF) before tapping, steel at the beginning and end of sec-
ondary metallurgy processing. Predictor selection combined thermodynamic reasoning
and correlation analysis to produce prediction equations that passed heteroscedasticity,
normality, autocorrelation, collinearity, and graphical residual distribution tests. The k-fold
cross-validation method was also used to evaluate models’ performance. The models
achieved an adequate accuracy of 77.23–83.46% for their respective stages. These findings
demonstrate that statistically robust and physically interpretable regressions can capture
the complex interplay between kinetics and the various processes that govern nitrogen
pick-up and removal. All data are from U. S. Steel Košice, Slovakia; thus, the models
capture specific setup, raw materials, and production practices. After adaptation within the
knowledge transfer, implementing these models in process control systems could enable
proactive parameter optimization and reduce laboratory delays, ultimately minimizing
excessive nitrogenation in finished steel.

Keywords: nitrogen; prediction equations; production modeling; process optimization;
digitalization

1. Introduction
In recent years, controlling the amount of nitrogen in the steelmaking process has

become increasingly important. Controlling nitrogen content is important because high
nitrogen content in metal has an overall adverse effect on the properties of the steel pro-
duced [1,2]. An exception is nitrogen in austenitic stainless steel, where the presence of
nitrogen is desirable [3–8]. Increased nitrogen content leads to a deterioration in deep
drawability and resistance to ageing, reduces the degree of recrystallization, and also
impairs the mechanical properties of steel, which include formability and strength [9–11].
The increased presence of nitrogen in general steel also negatively affects the weldability of
steel [12,13] (over 0.4 wt.% Nitrogen), as well as the electrical parameters [14]. In general,
the nitrogen content of steel produced in a basic oxygen furnace (BOF) ranges from 20 to
60 ppm. Steel can contain nitrogen in an unbound form or as a chemical compound, such
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as a nitride [15]. A large number of factors influence the nitrogen content in steel, and
their interaction during the steelmaking process determines the final nitrogen value. The
solubility of gases in molten metals is generally very low, which leads to the consideration
of gases in metals as infinitely diluted solutions [16]. The process of nitrogen dissolving in
molten metal is dictated by Equation (1), and the Gibbs free energy associated with this
process is expressed by Equation (2) [15–19]. An explanation of all symbols listed in this
paper can be found in the “List of symbols” at the end of the article.

½ N2(g) = [N] (1)

∆G◦ = −3590 − 23.89 T [J.mol−1] (2)

The equilibrium constant of Equation (1) has the form of Equation (3) [16,20].

KN =
aN(

pN2

) 1
2
=

fN [%N]
√pN2

[
Pa−1/2

]
(3)

Given that nitrogen in molten metal is a diluted solution, it can be assumed that
fN = 1 [21,22]. Equation (1) being endothermic, it can be deduced that the solubility of
nitrogen in the molten state increases with rising temperature. The solubility of nitrogen in
liquid metal is found to be significantly dependent on gas pressure, temperature, and also
on the metal itself, whose chemical composition undergoes substantial changes during the
smelting process. Equation (4) expresses the relationship between the quantity of elemental
nitrogen dissolved in metal and the pressure at which it is held above the molten metal at a
constant temperature, which is known as Sievert’s law [16,17,20,23,24].

[%N] = KN ·
(

pN2

) 1
2 (4)

In the event that the dissolution of gases in metals occurs in strict accordance with
Sievert’s law, this serves as an indication that the gas is present in the liquid metal in its
elemental form. However, in reality, the dependence of gas solubility on pressure is often
more complex. This observation indicates that gas may not be present in metals exclusively
in atomic form. Relevant results according to Sieverts’ law are also only achieved at lower
gas pressures above the surface of the liquid metal [16,25]. The temperature-dependent
amount of dissolved elemental gas in molten metal can be expressed at constant pressure
via the following Equation (5) [26].

[%N] = C·e
−∆H
2kT (5)

According to the established relationship, it can be determined that the concentration
of dissolved nitrogen in molten metal is directly proportional to the equilibrium con-
stant KN, as depicted in Equation (1). Van’t Hoff’s reaction isobar demonstrates that the
equilibrium constant is a function of temperature as showed in Equation (6).

dlnKN
dT

=
∆H
RT2 (6)

A significant increase in the solubility of nitrogen in iron is observed at a temperature
of 907 ◦C. As the data demonstrate, with an increase in temperature, the solubility of
nitrogen in γ-Fe decreases, which is related to the formation of Fe4N and Fe2N nitrides
according to Equations (7) and (8) [27].

2 N + 8 Fe ↔ 2 Fe4N (7)
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N + 2 Fe ↔ Fe2N (8)

The courses of Equations (7) and (8) are exothermic, with values that exceed the
negative value of the heat of dissolution of nitrogen in iron. Therefore, as demonstrated
in Equation (5), it can be concluded that the solubility of nitrogen in γ-Fe decreases with
rising temperature.

In addition to iron, nitrogen in steel also reacts with other elements dissolved in the
melt. This process gives rise to the formation of various chemical compounds, the existence
of which depends on several factors. These include the chemical composition of the steel,
the sequence of the steelmaking process, the temperature or pressure within the system,
and the subsequent heat treatment of the steel. Figure 1a illustrates the impact of specific
elements on the solubility of nitrogen in molten iron [28,29].

(a) (b)

Figure 1. (a) The influence of individual elements on the solubility of nitrogen in liquid iron at
1600 ◦C and a nitrogen pressure of 101,325 Pa (picture recreated based on [28,29]); (b) the influence of
individual elements on the nitrogen activity coefficient in Fe–N...E melts at 1600 ◦C (picture recreated
based on [29]).

The presence of nitrogen in molten metal solutions has a significant influence, primar-
ily due to the amount of carbon present. In this regard, the status of carbon (Figure 1b)
is determined by the fact that its atoms occupy analogous positions to iron atoms when
the crystal lattice forms. At the same time, carbon reacts with oxygen to form CO bubbles,
which carry nitrogen atoms as they travel through the metal towards the surface [30].

In the event that the steel under consideration contains multiple dissolved elements,
the solubility of nitrogen in the poly-component system can be expressed based on the
transformed Equation (3) into the following Equation (9), which can be modified to form
Equation (10).

a[N] = f[N] · [N]steel = KN · √pN2 (9)
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log[N]steel = logKN + 0.5log.pN2 − log f[N] (10)

The application of Sieverts law allows for the determination of the dependence
of solubility on the heat, pressure, and chemical composition of steel, as expressed by
Equation (11). The activity coefficient of nitrogen, f[N], is expressed as a function of elemen-
tal content, eE

N , according to the following Equation (12), while the activity coefficient of
nitrogen in the multicomponent system (Fe–N...E) is determined by the Wagner equation
according to Equation (13).

log[N]steel = −375T − 1.154 + 0.5log.pN2 − log f[N] (11)

log f E
N = eE

N .[%E] (12)

f Fe...E
N = f ∗N . f C

N . f D
N . . . f E

N (13)

The actual nitrogen content in the metal melt is determined by the dissolution rate of
nitrogen in the melt

(
vNdiss

)
and the removal rate of nitrogen from the melt

(
vNrmvl

)
. The

temporal variation in the nitrogen content [N] of the melt, as a function of the blowing time
(τ), is calculated by Equation (14).

d[N]

dτ
= vNdiss − vNrmvl (14)

The dissolution of nitrogen into molten metal can be described by the sequence of
the following individual steps [29,31,32]: (1) transfer of nitrogen molecules from the gas
volume to the phase interface; (2) adsorption of nitrogen molecules on the interfacial
layer; (3) Reaction at the phase interface; (4) desorption of nitrogen atoms from the phase
interface; (5) diffusion of nitrogen atoms from the gas-melt phase interface by melt flow
into its volume.

Desorption followed by diffusion of nitrogen atoms into the metal volume probably
has the greatest effect on the dissolution rate of nitrogen in liquid metal, as these are the
slowest processes in the sequence of steps described above. As the rate of dissolution is
determined by the slowest action, it is possible to formulate Equation (15) for the kinetics
of nitrogen dissolution in molten metal [17].

vNdiss =
D
δ
· S ·

(
[N]sr f c − [N]vol

) [
mol.s−1

]
(15)

The dissolution rate of nitrogen in molten metal is defined by Equations (16) and (17),
as stated in the literature [17]. Equation (16) is used for the calculation at low concentra-
tions of surfactants such as sulfur and oxygen, while Equation (17) is applied to find the
dissolution kinetics of nitrogen at high concentrations of these elements.

dC[N]

dt
=

A
V

· k ·
(

C[N]eq. − C[N]

)
(16)

dC[N]

dt
=

A
V

· k ·
(

C2
[N]eq. − C2

[N]

)
(17)

The determination of the kinetics of nitrogen dissolution in metal can be achieved
through the utilization of Equation (18), which is dependent on the composition of the
metal solution, its concentration, and the temperature [33].

k =
D
δ
· S = β · S (18)
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Figure 2a,b shows a graphical representation of the nitrogen dissolution rate constant
β in Fe–C and Fe–O alloys as a function of temperature and the concentration of the
given element.

(a) (b)

Figure 2. Dependence of the dissolution rate constant of nitrogen in alloying elements on carbon
concentration and temperature (picture recreated based on [33]): (a) Fe–C alloy; (b) Fe–O alloy.

Improper control of nitrogen content during steel production can lead to critical
quality issues that significantly compromise the mechanical properties, surface quality, and
overall performance of steel products. These issues occur at various stages of production.
One of the most significant quality issues associated with high nitrogen content is the
formation of gas bubbles and porosity in steel. Nitrogen has limited solubility in molten
steel, and its solubility decreases dramatically as temperature drops during solidification.
Nitrogen bubbles form within the steel if nitrogen exceeds the solubility limit [34,35].
Research indicates that chromium increases nitrogen solubility most significantly, followed
by manganese and molybdenum, while nickel decreases solubility. This compositional
sensitivity requires careful alloy design to control nitrogen effects [34]. The formation of
these bubbles follows Sieverts’ law, which describes the dependence of gas concentration on
pressure [35]. The porosity formation is particularly problematic in welding operations [36].
Steel can become brittle when exposed to high nitrogen concentrations, particularly when
combined with other interstitial elements [37]. Improper nitrogen control can increase
susceptibility to cold cracking, particularly in high-strength steels. The interstitial nitrogen
atoms create stress concentrations that can initiate and propagate cracks [38]. Excessive
nitrogen pickup reduces the steel’s ability to deform plastically, leading to premature failure
under load. This is particularly critical in structural applications, where ductility is essential
for safety reasons [39].

Linear regression effectively predicts metallurgical outputs (production, temperature,
strength, corrosion, nitrogen content) when relationships are approximately linear. With
proper variable selection, data cleaning, and validation, it achieves up to 8% measurement
accuracy [40]. Its advantages include simple implementation, high interpretability, and
fast calculations. Combined with kinetic/thermodynamic models, it provides fundamen-
tal process understanding [41]. Random Forest algorithms consistently achieve 88–92%
success across parameters, offering noise resistance and variable importance identifica-
tion [42,43]. Support Vector Regression (SVR) and Extreme Learning Machine (ELM) excel
in specific applications, with ELM providing extremely fast training [44]. Neural networks
and Deep Learning demonstrate the highest accuracy (R2 = 0.79–0.92) for various parame-
ters [42,45,46], forming promising real-time solutions for comprehensive nitrogen content
prediction in steelmaking processes.



Appl. Sci. 2025, 15, 9561 6 of 46

The models presented in the available scientific literature focus on predicting the
nitrogen content in metal in only one specific phase of BOF steel production. The novel
aspect of this study is that it provides a comprehensive perspective on predicting the
nitrogen content in metal throughout the entire BOF production cycle. This approach to
the matter has not yet been published in the available studies.

The main aim was to develop predictive models of nitrogen content in liquid pig iron
and liquid steel. The proposed approach to the model and the scope of research applied
to the entire steel production cycle have not yet been developed in such a comprehensive
form and published in professional literature. Models were created to predict the nitrogen
content of metal at four production stages, namely, the nitrogen content of pig iron after
desulphurization, the nitrogen content of crude steel before tapping from basic oxygen
furnace (BOF) to the ladle, the nitrogen content of steel at the beginning of secondary
metallurgy processing, and the nitrogen content of steel at the end of secondary metallurgy
processing. This facilitates the monitoring of the development of nitrogen content in metal
at each crucial production stage of a specific heat. This provides a tool for appropriate cor-
rective intervention in the production process and its optimization to achieve the required
quality parameters.

It is notable that all data originate from U. S. Steel Košice, Slovakia; as such, the models
under consideration are representative of specific technological settings, raw materials, and
production practices. Following adaptation within the knowledge transfer, implementation
of these models in process control systems has the potential to enable proactive param-
eter optimization and reduce laboratory delays, minimizing excessive nitrogenation of
finished steel.

2. Materials and Methods
The production process of the material used to generate the data for this article can be

summarized as follows. Pig iron produced in a blast furnace was pretreated (desulfurized)
using a vertical refractory lance (Scandinavian lance) with a CaO–Mg-based mixture for
desulfurization. This mixture was blown into the pig iron using nitrogen as the carrier gas.
The pig iron was then charged into a top-blown basic oxygen furnace (BOF/LD process),
where a water-cooled oxygen lance was used to blow high-purity oxygen at supersonic
velocity onto the surface of the metal to oxidize the impurities. The BOF’s capacity was
170 tons. After approximately 17 min, the crude steel was tapped into a steel ladle. During
tapping from the BOF, the steel in the ladle was deoxidized by adding aluminum and
alloyed by adding ferroalloys. The steel chemical composition and thermal composition
were also finished and stirred in the ladle by blowing/bubbling argon through a porous
plug at the bottom. The chemical composition of the steel was finally refined, and the
temperature was finally optimized by blowing/bubbling argon through a porous refractory
block located at the bottom of the ladle. The analyzed heats were not vacuum-treated in
the RH vacuum degasser. At the end of secondary metallurgy, the steel was prepared for
casting on a continuous casting machine. The flow charts (Figure A1a–d) that illustrate the
overall research framework and model implementation within given phases can be found
in Appendix A.

A total of 291 metal samples from 76 heats were collected from 17 May 2025 to 22 May
2025 and analyzed for their nitrogen content. The sampling design aimed to obtain samples
from all four production phases within a single heat. This made it possible to monitor the
amount of nitrogen in a given heat and how it varied throughout the production process.
A collection of 76 samples (standard “lollypop-shaped” samples) was obtained from pig
iron after desulfurization from the ladle, 68 samples were obtained from crude steel before
tapping from BOF, 75 samples were obtained from molten steel in the ladle at the beginning
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of secondary metallurgy, and 72 samples were obtained from molten steel in the ladle at
the end of secondary metallurgy. The reason why it was not possible to obtain exactly
76 samples from each phase was most likely due to a failure in sampling, in which it was
not possible to adequately and reliably evaluate the nitrogen content in the sample itself.

The samples taken consisted of two grades of steel. The first was a structural steel
grade with a manganese content above 0.80% and a guaranteed Al content with the
following prescribed composition: 0.07–0.21% C; 0.8–1.6% Mn; 0.03–0.6% Si; min 0.02% Al;
max. 0.025% P; max. 0.020% S. The second grade was deep-drawing Al-killed steel with the
following prescribed composition: 0.02–0.1% C; 0.1–0.55% Mn; max. 0.08% Si; 0.02–0.07%
Al; 0.01–0.07% P; max. 0.020% S; 0.004–0.0075% Nb.

The samples were evaluated for nitrogen content in pig iron and steel at the certified
Quantometric laboratory of U. S. Steel Košice (Labortest, s.r.o.) by using a combustion
analyzer ELTRA ON 900 (ELTRA GmbH, Haan, Germany) that determines nitrogen using
a thermal conductivity detection method (based on ASTM E-1019 standard [47]). The
equipment is calibrated by the manufacturer and checked once a year by the manufacturer’s
service technician. Every four hours, a laboratory technician checks the device by using a
sample standard. The analyzer has a measurement range of 0.0001–0.03% N with an error
range of ±0.1 ppm or ±1% of nitrogen content. Two measurements, main and control,
are evaluated.

The nitrogen content of the metal was determined using heat and sample identification
numbers. These data were synchronized with relevant databases containing records of the
metal’s chemical composition, temperature, weight, and other parameters attributable to
that stage of processing. The synchronized parameter database was initially compiled in
Microsoft Excel 365 with the Lumivero XLSTAT 2019 statistical add-in. Subsequently, the
correlation matrix, generated using STATISTICA 7.0 from StatSoft Inc. (Tulsa, OK, USA),
enabled the determination of the order of factors affecting the final nitrogen content at a
given stage of production. The data file was processed using Gretl 2025a (build 2025-03-20),
a powerful and sophisticated statistical tool. The k-fold cross-validation was performed
using the open-source program Orange Data Mining 3.39.0 from the Bioinformatics Lab at
the University of Ljubljana, Slovenia.

Determining the factors and assessing their impact on the amount of nitrogen in
metal is a key attribute in optimizing technological and operational measures aimed at
minimizing or preventing over-nitrogenation of the final steel. It is crucial to identify and
quantify the influence of individual factors on the nitrogen content in metal to effectively
address the issue of predicting its quantity during the production and processing stages of
steelmaking. A correlation matrix was created that included all analyzed factors, which
made it possible to determine the quantitative dependence in which changes in one variable
lead to changes in another.

This dependence is expressed by a function called a regression function. Depending on
its shape, the regression function can indicate a positive or negative correlation. A positive
correlation occurs when the regression function is increasing, and a negative correlation
occurs when the regression function is decreasing. Each indicator was subjected to classical
and modern regression analysis, while elements of cointegration analysis of non-stationary
variables were also applied [48].

The existence of linear correlation dependence in a two-dimensional statistical set is
indicated by the presence of a covariance in Equation (19).

k = Sxy =
1
n
·

n

∑
i=1

(xi − x) · (yi − y) (19)
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where (xi, yi) are individual pairs of observations, x and y are the corresponding arithmetic
means. The covariance depends on the choice of scale for the values of random variables
ξ and η. Therefore, Pearson’s correlation coefficient is used to measure the degree of
linear correlation [49,50]. The correlation coefficient of a statistical set ranges within the
closed interval ⟨−1,1⟩. In absolute terms, the value approaches 1 as the linear correlation
between the variables ξ and η increases. The calculation of the correlation coefficient of a
two-dimensional basic set is performed in accordance with the following Equation (20) [51].

ρ(ξ, η) =
cov(ξ, η)√
D(ξ) · D(η)

(20)

The correlation coefficient R measures the strength of statistical dependence between
two quantitative variables. Unlike regression, correlation analysis does not express a cause-
and-effect relationship Y = f(X). Variable Y does not depend on variable X, but the two
random variables X and Y change together. Regression analysis assumes that variable Y
is random and variable X is fixed. The term correlation coefficient most often refers to
Pearson’s correlation coefficient in Equation (21) [52].

Rxy =
∑ xiyi − nxy
(n − 1)sxsy

(21)

As demonstrated in Equation (21), it is feasible to identify the order of relevance of
the factors that exert the most significant influence on the amount of nitrogen in the metal
within a specific phase of steel production in a closed cycle. The objective of this study was
to identify the most significant factors for each phase that was analyzed.

The interpretation of the correlation coefficient R depends on the context and nature of
the data. A value of 0.8 is very low for verifying a physical law, but very high for the social
sciences [53,54]. Jacob Cohen developed a simplified instrument for the interpretation of
correlation coefficients in research [55], as illustrated in Table 1.

Table 1. Cohan’s interpretation of correlation coefficients [55].

Correlation
coefficient 0–0.1 0.1–0.3 0.3–0.5 0.5–0.7 0.7–0.9 0.9–1

Correlation
interpretation

trivial,
very
small

little,
low moderate big,

high

very big,
very
high

perfect,
clear

The R2 value (22) is referred to as the coefficient of determination, which quantifies
the proportion of common variability between two variables. The R2 value achieved
is contingent upon the nature of the data being processed. The interpretation of the
coefficient of determination values achieved is significantly influenced by the nature of the
analyzed data.

R2
xy = 1 −

s2
y|x
s2

y
or R2

xy = −
s2

x|y
s2

x
(22)

Non-stationarity is a property of time series or datasets in which the statistical proper-
ties (e.g., mean, variance) are shown to change over time. Econometrics is characterized by
the utilization of non-stationary datasets, a principle that aligns with the methodologies em-
ployed in metallurgy [56,57]. In the field of economic sciences, it has been established that
coefficient of determination values above R2 = 0.15 are not achieved [58]. Non-stationarity
is also observed in metallurgical data, particularly in processes where conditions vary over
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time, such as temperatures during melting, cooling, or changes in chemical composition
during metal processing [59].

The combination of modern linear regression analysis and cointegration analysis
enables the design, analysis, and verification of predictive models that can be applied in
operating conditions. Non-stationary variables are a characteristic of metallurgy. When
such time-dependent variables are used, there is a risk of spurious regression. This occurs
when there is no cointegration effect between non-stationary variables, i.e., no long-term,
stable relationship. If spurious regression were not detected, this would negatively impact
the identification of factors, the interpretation of results, and the application of the model in
real technological practice. In this study, cointegration analysis was employed to validate
the model derived from modern linear regression analysis.

The Ordinary Least Squares (OLS) method was used for data processing. Compared
to other estimation techniques, the OLS method provides optimal estimates even for small
samples of observations, and the algorithm for calculating these estimates is relatively sim-
ple [60,61]. Furthermore, this method forms the basis of a wide range of more sophisticated
estimation tests and procedures.

For statistical processing purposes, the following general model was proposed for
calculating the predicted amount of nitrogen in metal at individual stages of steel produc-
tion (23).

Nn = z0 + z1·Z1 + z2·Z2 + · · ·+ zn·Zn (23)

Adequate coefficients were calculated for the analyzed factors influencing the amount
of nitrogen present in metal during the various stages of steel production. The correspond-
ing standard error, t-ratio, and p-value were also calculated for each coefficient. The t-ratio
parameter expresses the value of the standard deviation [62,63] and assesses whether two
groups (dependent and independent) differ statistically from each other [64]. The p-value is
a random variable based on the measured values of the monitored quantity. It expresses the
probability of obtaining a value at least as extreme as the one actually observed, assuming
the null hypothesis is true. It ranges [0, 1] [65].

In statistical hypothesis testing, the null hypothesis formally evaluates specific aspects
of the statistical behavior of datasets. This evaluation is considered valid if the actual
behavior of the datasets contradicts the assumption. Consequently, the null hypothesis can
be accepted or rejected [66]. The proposed models were analyzed using several verification
methods, such as the heteroscedasticity test, normality test, autocorrelation test, collinearity
test, and graphical examination of residual distribution. To confirm the accuracy of the
conclusions of the modern regression analysis, an econometric cointegration analysis was
also performed.

The estimation of reliable performance was accomplished through the utilization of
k-fold cross-validation. This statistical technique is used to evaluate the performance of
statistical models. It operates on the principle of dividing a dataset into k equal parts
(folds). In this study, the setting k = 10 (10-fold cross-validation) was employed due to
the smaller dataset. This configuration engenders reduced bias, with 90% of the data
being utilized for training in each iteration. In an analogous manner, when k = 10, a
sufficient number of iterations are performed to obtain stable results, which also represents
computational efficiency.

The following were used to determine the accuracy of the prediction models: Mean
Absolute Error (MAE), which expresses the average absolute deviation of the actual values
from the estimated (or predicted) values. MAE is determined using Equation (24).

MAE =
1
n

n

∑
t=1

|et| (24)



Appl. Sci. 2025, 15, 9561 10 of 46

The Mean Percentage Error (MPE), which expresses the degree of distortion, was also
applied to determine the accuracy of the model. Equation (25) can be used to calculate
whether the model underestimates or overestimates reality.

MPE =
1
n

n

∑
t=1

et

yt
· 100[%] (25)

Mean Absolute Percentage Error (MAPE), according to Equation (26), was used to
express the average size of forecast errors as a percentage of the actual measured values
over the entire forecasting period [67].

MAPE =
1
n

n

∑
t=1

|et|
yt

· 100[%] (26)

The accuracy of the entire model is determined according to Equation (27).

Model accuracy: Nstage = 100 − MAPE [%] (27)

3. Results
Determining the factors and assessing their impact on the nitrogen content of metal is

key to optimizing technological and operational measures to minimize or prevent excessive
nitrogenation of the final steel. The identification and quantification of the influence of
individual factors on the nitrogen content in metal is imperative for the effective predic-
tion of its quantity during the production and particular steelmaking processing stages.
Through the synthesis of correlation analysis findings, physical and empirical evidence,
the most significant agents were identified, thereby establishing a foundation for subse-
quent, more intricate statistical procedures. This study utilized a comprehensive analytical
approach encompassing classical and modern regression analysis, complemented by ele-
ments of cointegration analysis of non-stationary variables employed in econometric time
series analyses.

3.1. Parameters Affecting the Amount of Nitrogen in Molten Desulfurized Pig Iron

As shown in Table 2, the following factors have been identified as the most significant
in determining the amount of nitrogen present in desulphurized pig iron: the results of the
regression analysis were obtained using a correlation matrix. As demonstrated in Table 2,
the correlation indices could be interpreted as low to trivial according to Table 1. However,
it should be noted that these are non-stationary integrated variables, where high correlation
coefficients are not achieved even though these parameters have a significant effect on the
dependent variable, which in this case is nitrogen.

Figure 3 shows a graphical representation of the effect of the amount of nitrogen
added as a carrier gas for the desulphurization mixture on the amount of sulfur removed
and the resulting nitrogen content of the pig iron. Figure 4a,b illustrates the impact of
certain parameters listed in Table 2 on the final nitrogen content in metal during the
desulphurization phase of pig iron processing. As demonstrated in Figure 4a, an increase
in the amount of sulfur removed results in an increase in the amount of nitrogen present
in the pig iron. Similarly, Figure 4b illustrates that an increase in the amount of nitrogen
blown results in an increase in the amount of nitrogen dissolved in the pig iron A more
thorough examination of the results is presented in Section 4.1.
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Table 2. Ranking of factors affecting the nitrogen content in desulphurized pig iron.

Rank Coefficient Factor Correlation
Coefficient R

Coefficient of
Determination R2

1. a1 Amount of sulfur removed [%] 0.2226 0.0495
2. a2 Amount of nitrogen added as a carrier gas [l] 0.1379 0.0190
3. a3 Weight of pig iron after desulfurization [kg] 0.1123 0.0126
4. a4 Amount of desulphurization mixture [kg] 0.0965 0.0093

5. a5
Temp. difference before and after

desulfurization [◦C] 0.0964 0.0093

Figure 3. The effect of the amount of nitrogen added as a carrier gas during the desulphurization
of pig iron and the amount of sulfur removed during the desulfurization process on the nitrogen
content in pig iron.

(a) (b)

Figure 4. (a) The effect of the amount of sulfur removed on the nitrogen content in a metal sample
after desulfurization of pig iron; (b) the effect of the amount of blown nitrogen (carrier gas) on the
nitrogen content in the metal after desulfurization of pig iron.
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Table 3 shows the conditions for statistical testing of nitrogen presence in pig iron
before the desulphurization process.

Table 3. Conditions for statistical testing of nitrogen presence in pig iron before desulphurization.

Entry Requirement Value

Significance level, α 0.05 *
Number of observations, n 76
Number of parameters, m 5

* Unless otherwise stated.

Tables 4 and 5 show the results of modern regression analysis for the individual factors
(variables) listed in Table 2.

Table 4. Results of a modern regression analysis of the factors influencing the nitrogen content in
metal during the desulfurization phase of pig iron.

Coefficient Value Standard Error t-Ratio p-Value

a0 0.000105058 0.0081269 0.0129 0.98972
a1 0.0220528 0.00959012 2.2995 0.02446
a2 2.5678 × 10−8 2.69278 × 10−8 0.9536 0.34357
a3 2.50746 × 10−8 5.74314 × 10−8 0.4366 0.66374
a4 −2.35159 × 10−6 1.38981 × 10−6 −1.6920 0.09509
a5 4.96884 × 10−6 1.0213 × 10−5 0.4865 0.62812

Where: a0 constant/intercept, a1–a5 coefficients of variables (from Table 2).

Table 5. Results of individual tests using modern regression analysis to identify the factors influencing
nitrogen content in metal during the desulphurization phase of pig iron production.

Parameter Value

Mean value of the dependent variable 0.003958
Sum of squared residuals 0.000036

R2—Coefficient of Multiple Determination 0.097373
F(5, 70)—F-test 1.510277

Standard deviation of the dependent variable 0.000730
Durbin–Watson test 1.641496

3.2. Parameters Affecting the Amount of Nitrogen in Molten Crude Steel Before Tapping from BOF

Table 6 lists the most significant factors affecting the amount of nitrogen in crude steel
before its tapping from BOF.

Table 6. Ranking of factors affecting the nitrogen content in crude steel before tapping from BOF.

Rank Coefficient Factor Correlation
Coefficient R

Coefficient of
Determination R2

1. b1 Oxygen reblow time [s] 0.4291 0.1842
2. b2 Manganese content in crude steel [%] −0.3017 0.0910
3. b3 Phosphorus content in crude steel [%] −0.2339 0.0547
4. b4 Carbon content in crude steel [%] −0.2055 0.0422
5. b5 Briquettes [kg] −0.1594 0.0254
6. b6 Temperature of tapping steel [◦C] 0.1457 0.0212
7. b7 Oxygen blowing time [s] −0.1314 0.0173

Based on Cohen’s distribution, the correlation coefficients can be interpreted as ranging
from small to medium. However, it is important to note the non-stationary nature of the
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data from integrated systems, and that achieving medium correlation coefficient values
with operational data is a great success.

Figure 5 shows the effect of the levels of phosphorus and manganese in crude steel on
the final nitrogen content in crude steel before its tapping from BOF. Figure 6a–d illustrates
the impact of certain parameters listed in Table 6 on the final nitrogen content in crude steel
produced in BOF prior to tapping into the ladle. As illustrated in Figure 6a, an increase in
the amount of manganese in crude steel is accompanied by a decrease in the amount of
nitrogen dissolved in crude steel. In a similar manner, an increase in phosphorus (Figure 6b)
and carbon (Figure 6c) results in a decrease in the amount of nitrogen dissolved in crude
steel. Conversely, an increase in the temperature of crude steel (Figure 6d) has been shown
to result in an increase in the amount of nitrogen dissolved in the crude steel. Further
analysis of the results is provided in Section 4.2.

Figure 5. The effect of the phosphorus and manganese content in crude steel on the nitrogen content
in crude steel produced in BOF prior to tapping.

The conditions for the statistical testing of nitrogen presence in crude steel prior to
tapping from the BOF are provided in Table 7.

Table 7. Conditions for statistical testing of nitrogen presence in steel before tapping from BOF.

Entry Requirement Value

Significance level, α 0.05 *
Number of observations, n 63
Number of parameters, m 7

* Unless otherwise stated.

Tables 8 and 9 present the findings of modern regression analysis for the individual
factors (variables) enumerated in Table 6. It can be observed that correct results were
achieved using the OLS method.
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(a) (b)

(c) (d)

Figure 6. (a) The effect of manganese content in molten steel on nitrogen content in crude steel
before tapping; (b) the effect of phosphorus content in molten steel on nitrogen content in crude
steel before tapping; (c) the effect of carbon content in molten steel on nitrogen content in crude steel
before tapping; (d) the effect of temperature of tapping molten steel on nitrogen content in crude steel
before tapping.

Table 8. Results of a modern regression analysis (OLS) of the factors influencing the nitrogen content
in crude steel prior to tapping from BOF.

Coefficient Value Standard Error t-Ratio p-Value

b0 −0.0137962 0.0113016 −1.2207 0.22740
b1 7.06124 × 10−6 2.94964 × 10−6 2.3939 0.02011
b2 −0.000306035 0.00286768 −0.1067 0.91540
b3 −0.0469186 0.0353764 −1.3263 0.19023
b4 −0.00499063 0.00482186 −1.0350 0.30520
b5 −3.44051 × 10−8 7.63705 × 10−8 −0.4505 0.65412
b6 1.04457 × 10−5 6.87455 × 10−6 1.5195 0.13437
b7 −3.96352 × 10−7 4.22613 × 10−7 −0.9379 0.35242

Where: b0 constant/intercept, b1–b7 coefficients of variables (from Table 6).
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Table 9. Results of individual tests using modern regression analysis to identify the factors influencing
nitrogen content in crude steel before its tapping from BOF.

Parameter Value

Mean value of the dependent variable 0.002002
Sum of squared residuals 0.000017

R2—Coefficient of Multiple Determination 0.292051
F(7, 55)—F-test 2.326593

Standard deviation of the dependent variable 0.000614
Durbin–Watson test 2.000830

3.3. Parameters Affecting the Amount of Nitrogen in Molten Steel at the Beginning of
Secondary Metallurgy

Table 10 lists the strongest factors influencing the amount of nitrogen in steel at the
beginning of secondary metallurgy (SM).

Based on Table 1, the results in Table 10 can be interpreted as indicating small to
medium levels of dependency. However, higher correlation coefficient values can be
observed when compared to the results in Table 6. Figures 7–9 illustrate the impact of
certain parameters from Table 10 on the nitrogen content of molten steel at the beginning of
the SM processing. It is evident from Figure 9a,b that an increase in the amount of carbon
and manganese in the molten steel prior to argon bubbling results in an increase in the
amount of nitrogen dissolved in the molten steel. A more detailed analysis of the results
can be found in Section 4.3.

Figure 7. The influence of the total amount of aluminum in steel before argon bubbling and the
amount of added aluminum blocks into steel on the nitrogen content in steel at the beginning of the
SM process.
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Table 10. Ranking of factors affecting the nitrogen content in steel at the beginning of sec-
ondary metallurgy.

Rank Coefficient Factor Correlation
Coefficient R

Coefficient of
Determination R2

1. c1 Tapping angle [◦] −0.4470 0.1998
2. c2 Silicon in molten steel prior to argon

bubbling [%]
0.3711 0.1377

3. c3 Total aluminum prior to argon bubbling [%] −0.2749 0.0756
4. c4 Carbon in molten steel prior to argon

bubbling [%]
0.2285 0.0522

5. c5 Manganese in molten steel prior to argon
bubbling [%]

0.2251 0.0507

6. c6 Tapping time [s] 0.2203 0.0485
7. c7 Added aluminum blocks [kg] 0.2040 0.0416

Figure 8. The influence of the tapping angle of BOF and the overall tapping time of steel from BOF
on the nitrogen content in steel at the beginning of the SM process.

Table 11 shows the conditions for statistical testing of nitrogen presence in steel at the
beginning of secondary metallurgy processing.

Table 11. Conditions for statistical testing of nitrogen presence in steel at the beginning of secondary
metallurgy.

Entry Requirement Value

Significance level, α 0.05 *
Number of observations, n 75
Number of parameters, m 7

* Unless otherwise stated.
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(a) (b)

Figure 9. (a) The effect of the carbon content in molten steel prior to argon gas bubbling on the
nitrogen content in a metal sample before SM; (b) the influence of the manganese content in molten
steel prior to argon gas bubbling on the nitrogen content in a metal sample before SM.

Tables 12 and 13 present the outcomes of a modern regression analysis of the individual
factors (variables) listed in Table 10. The tables demonstrate that the correct results were
obtained using the ordinary least squares method (OLS).

Table 12. Results of a modern regression analysis (OLS) of the factors influencing the nitrogen content
in steel at the beginning of the SM processing.

Coefficient Value Standard Error t-Ratio p-Value

c0 0.00982567 0.00228811 4.2942 0.00006
c1 −7.89409 × 10−5 1.89305 × 10−5 −4.1700 0.00009
c2 0.00368566 0.00143795 2.5631 0.01262
c3 −0.00987549 0.00757363 −1.3039 0.19672
c4 0.00442257 0.00595744 0.7424 0.46046
c5 −0.00140863 0.000838822 −1.6793 0.09775
c6 6.15271 × 10−7 1.35425 × 10−6 0.4543 0.65106
c7 6.28702 × 10−6 3.14335 × 10−6 2.0001 0.04955

Where: c0 constant/intercept, c1–c7 coefficients of variables (from Table 10).

Table 13. Results of individual tests using modern regression analysis to identify the factors influenc-
ing the final nitrogen content in steel at the beginning of the SM processing.

Parameter Value

Mean value of the dependent variable 0.003160
Sum of squared residuals 0.000035

R2—Coefficient of Multiple Determination 0.402680
F(7, 67)—F-test 6.452518

Standard deviation of the dependent variable 0.000888
Durbin–Watson test 1.872243

3.4. Parameters Affecting the Amount of Nitrogen in Molten Steel at the End of
Secondary Metallurgy

Table 14 shows the most significant factors that influence the nitrogen content of steel
at the end of the secondary metallurgy processing.
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Table 14. Ranking of factors affecting the nitrogen content in steel at the end of secondary metal-
lurgy (SM).

Rank Coefficient Factor Correlation
Coefficient R

Coefficient of
Determination R2

1. d1 Steel temperature at the end of SM [◦C] −0.2768 0.0766
2. d2 Final carbon in molten steel [%] 0.2268 0.0514
3. d3 Addition of FeMn aff. during SM [%] 0.2056 0.0423
4. d4 Final manganese in molten steel [%] 0.1930 0.0372

According to Cohen’s distribution, the correlation coefficient values from Table 14
are low. Figure 10a–d illustrates the factors from Table 14 that influence the final nitrogen
content in steel at the end of the secondary metallurgy processing. It can be seen in
Figure 10a that, as the temperature of the steel increases at the end of SM, the amount of
dissolved nitrogen in the molten steel decreases. Figure 10b shows that, as the final amount
of carbon in the molten steel increases, the amount of nitrogen in the molten steel also
increases. Adding FeMn aff. ferroalloy (Figure 10c) increases the amount of nitrogen in the
liquid steel, and increasing the amount of manganese in the steel (Figure 10d) increases the
amount of nitrogen in the steel at the end of SM. Further analysis of the results is provided
in Section 4.4.

(a) (b)

(c) (d)

Figure 10. (a) The effect of molten steel temperature at the end of secondary metallurgy (SM) on
nitrogen content in molten steel; (b) the effect of final carbon content in molten steel at the end of SM
on nitrogen content in molten steel; (c) the effect of the added amount of FeMn aff. (affine) during
SM on nitrogen content in molten steel; (d) the effect of final manganese content in molten steel at the
end of SM on nitrogen content in molten steel.
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The conditions for statistical testing of nitrogen presence in steel at the end of secondary
metallurgy processing are shown in Table 15.

Table 15. Conditions for statistical testing of nitrogen presence in steel at the end of sec-
ondary metallurgy.

Entry Requirement Value

Significance level, α 0.05 *
Number of observations, n 72
Number of parameters, m 4

* Unless otherwise stated.

Tables 16 and 17 show the results of a regression analysis of the individual factors
(variables) listed in Table 14. The tables confirm that the correct results were obtained using
the OLS method.

Table 16. Results of a modern regression analysis (OLS) of the factors influencing the nitrogen content
in steel at the end of the SM processing.

Coefficient Value Standard Error t-Ratio p-Value

d0 0.0257714 0.0241686 1.066 0.2902
d1 −1.45992 × 10−5 1.52140 × 10−5 −0.9596 0.3408
d2 0.0126950 0.00645446 1.967 0.0534
d3 3.08438 × 10−6 1.63553 × 10−6 1.886 0.0637
d4 −0.00153525 0.000911391 −1.685 0.0968

Where: d0 constant/intercept, d1–d4 coefficients of variables (from Table 14).

Table 17. Results of individual tests using modern regression analysis to identify the factors influenc-
ing the final nitrogen content in steel at the end of the SM processing.

Parameter Value

Mean value of the dependent variable 0.003270
Sum of squared residuals 0.000033

R2—Coefficient of Multiple Determination 0.241736
F(4, 67)—F-test 2.682089

Standard deviation of the dependent variable 0.000790
Durbin–Watson test 2.029951

4. Discussion
4.1. Model for Predicting Nitrogen Content in Molten Desulphurized Pig Iron

Section 3.1 contains Table 2, which shows the order of influence of the significant
factors that cause metal saturation by nitrogen during the desulfurization phase of pig iron.
The amount of nitrogen in pig iron after desulfurization is most influenced by the amount
of sulfur removed from the pig iron. Sulphur is a strong surface-active element in pig iron,
occupying active sites at the metal–gas interface and slowing down the decomposition of
molecular nitrogen {N2} from the carrier gas. During desulphurization, the activity of the
sulfur in the metal decreases, freeing up reaction sites at the phase interface and accelerating
the dissolution of atomic nitrogen [N] into the metal. Therefore, the more sulfur that is
removed from pig iron, the more nitrogen will dissolve in it. This is closely related to the
amount of carrier gas used in the desulfurization mixture, which is nitrogen. Nitrogen
enters the metal via an adsorption apparatus at the phase interface. Here, molecules are
dissociated into their atomic form, which then dissolves into the metal volume. The amount
of nitrogen supplied as a carrier gas is related to the amount of desulfurization mixture used.



Appl. Sci. 2025, 15, 9561 20 of 46

As the amount of desulfurization mixture added to pig iron can vary within a given volume
of carrier gas, these two factors both influence the oversaturation of pig iron by nitrogen.
The weight of the pig iron is directly proportional to the amount of desulfurization mixture
(for pig iron with a consistent sulfur content) and the volume of nitrogen used as the carrier
gas. The difference in temperature at the beginning and end of pig iron desulfurization is
significant in relation to nitrogen solubility in metal.

As shown in Table 5, the ordinary least squares (OLS) method yielded correct results.
The mean value of the dependent variable, which, in this case, is the amount of nitrogen
in the metal after desulphurization of pig iron, gives the mean value of the observed
dependent variable in the processed dataset.

The sum of squares of residuals is the total of the squares of the differences between
the measured and estimated values of the dependent variable. This sum must be minimal,
a goal that has been achieved.

The coefficient of multiple determination for residuals is a measure of the degree
of suitability of the regression. The values taken are in the range ⟨0,1⟩. The objective is
to attain the maximum possible value of R2. The interpretation of the obtained value of
the coefficient of determination is dependent to a significant extent on the nature of the
processed datasets. It is imperative to emphasize that non-stationary variables, which are
characteristic of the metallurgical industry, were processed. When such non-stationary
variables are obtained from integration systems (metallurgical aggregates, storage tanks,
etc.), R2 values of only around 0.15 are often achieved. However, this does not necessarily
indicate a low degree of suitability of the proposed regression [44].

The F-test is a statistical procedure that is employed to ascertain whether the standard
deviations of two datasets are equal [68]. The objective of this procedure is to ascertain
whether the typical cases in the set of examined numbers differ from each other, i.e., to
determine whether σ2

2 = σ2
1 primarily applies [69]. The critical value of the F distribution

Fcrit for a significance level of 10% (for a two-tailed test) is Fcrit(5, 70) = 1.931. The null
hypothesis has the form H0: σ2

2 = σ2
1 , and the alternative hypothesis has the form H1:

σ2
2 ̸= σ2

1 . It can be stated that, if Fcrit(5, 70) > F(5, 70), i.e., 1.931 > 1.5103, then the null
hypothesis can be accepted, whereby the standard deviations of the datasets at a given
significance level are 90% similar to each other.

The Durbin–Watson autocorrelation test was used to determine the presence of au-
tocorrelation, i.e., whether random components influence each other. At the relevant
significance level, we test the null hypothesis (H0: there is no autocorrelation) against the
alternative hypothesis (H1: autocorrelation is present). The test statistic can take values
ranging from 0 to 4, with values around 2 indicating the absence of autocorrelation [70].
From the calculated value of the Durbin–Watson autocorrelation coefficient (DW: 1.641496),
it can be concluded that the null hypothesis (H0) of the absence of autocorrelation is ac-
cepted. Therefore, the random components are considered to be statistically independent
at the relevant significance level (α). A special Granger–Newbold comparison was intro-
duced to indicate spurious regression using Durbin–Watson statistics (DW). To indicate
spurious regression, inequality in Equation (28) must be fulfilled; in other words, the
multiple determination coefficient (R2: 0.097373) must exceed the Durbin–Watson statistic
value [71,72].

R2 > DW (28)

In the regression for which the results are displayed in Table 5, this inequality is not
satisfied, which correctly indicates the absence of spurious regression. The time series
cointegration analysis was employed to accurately and correctly distinguish spurious
regression [72].
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The augmented Dickey–Fuller test was employed to test for cointegration. The testing
itself is based on the null hypothesis H0: the variables are not cointegrated, or the alternative
hypothesis H1: the variables are cointegrated. The subsequent data (Figure 11) are the
result of an investigation into the cointegration of the dataset in the Gretl 2025a program.

 

Figure 11. Output for the augmented Dickey–Fuller test of cointegration for model NDeS.

As illustrated in Figure 11, the p-value is 0.0246. Given that this value is lower than the
significance level α = 0.05, it can be concluded that the null hypothesis H0 must be rejected
and the alternative hypothesis H1 accepted. This indicates that the factors are cointegrated,
i.e., they are non-stationary in themselves, but their linear dependencies are stationary.
Consequently, spurious regression is not a possibility in mathematical modelling. Similarly,
the significantly negative value of tau_c(6) = −4.9592 indicates strong evidence for rejecting
the null hypothesis.

The parameters outlined above demonstrate the suitability of the proposed configura-
tion of variables (Table 4). As demonstrated in Equation (23), it is possible to formulate a
mathematical model to predict the nitrogen content in desulphurized pig iron (NDeS). The
resulting form of the model is as follows (29):

NDeS = 0.000105058 + 0.0220528 · A1 + 2.5678 × 10−8 · A2 + 2.50746 × 10−8 · A3

− 2.35159 × 10−6 · A4 + 4.96884 × 10−6 · A5 (29)

where:
NDeS: predicted nitrogen content in desulphurized pig iron;
A1: amount of sulfur removed [%];
A2: amount of blown nitrogen as carrier gas for the desulphurization mixture [l];
A3: weight of pig iron after desulfurization [kg];
A4: amount of desulphurization mixture [kg];
A5: temperature difference of pig iron before and after desulfurization [◦C].

Validity ranges of the model (29) are listed in Table 18.

The proposed model was subjected to a rigorous diagnostic process, which involved
the utilization of precise testing analyses and graphical tools. This study employed a range
of statistical techniques, including tests for normality, heteroscedasticity, multicollinearity,
and autocorrelation, to analyze the data. The analysis of the model was facilitated by the
utilization of graphical representations, including scatter plots, line graphs, and histograms.
The evaluation of the model is based on residuals, which represent the difference between
the measured and predicted values of the amount of nitrogen in the desulphurized pig iron.
Figure 12a presents a graphical representation of the residual variance, while Figure 12b
provides a residual analysis of the timeline.
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(a) (b)

Figure 12. (a) Residual dispersion for the processed dataset and model NDeS (29); (b) the residual
course in the timeline for the processed dataset and model NDeS (29).

As demonstrated in Figure 12a, the residual deviations are randomly dispersed around
zero, and no potential trend or pattern can be observed in the graph. Consequently, the
model is well designed and meets the assumptions. Figure 12b clearly shows that the sign of
the residual values changes sufficiently over time. This finding suggests that the designed
model generally does not overestimate or underestimate the calculated nitrogen values in
metal when making predictions. The sum of squares of residuals (Table 5) with a value of
0.000036 confirms this opinion, as the value is close to zero. This fact—the normality of the
residuals—is also evident from Figure 13, in which the red dots are arranged close to the
blue line, demonstrating the normal distribution of the residuals, which is also confirmed
by the histogram in Figure 14.

Figure 13. Graph of the normal distribution of residuals for the model NDeS (29).
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Table 18. Validity range of the NDeS model (29) for predicting the amount of nitrogen in desulphurized
pig iron.

Parameter Range of Values

Amount of sulfur removed [%] 0.017–0.082
Amount of blown nitrogen as carrier gas for

desulphurization mixture [l] 373–14,586

Weight of pig iron after desulfurization [kg] 139,200–145,500
Amount of desulphurization mixture [kg] 140–625

Temperature difference of pig iron before and
after desulfurization [◦C].

Temp. lowering by 38 ◦C
Temp. increase of 11 ◦C

Figure 14. Histogram of the normal distribution of residuals for model NDeS (29).

Figure 15 provides a graphical representation of the comparison between measured
and predicted results using the NDeS model (29). The red curve signifies the measured
values, whilst the blue curve denotes the predicted values of nitrogen content in pig iron
following desulfurization. The green curves represent the 95% confidence interval. The
standard deviation of the residuals is 0.000718051. This low value indicates minimal
discrepancies between the measured and predicted datasets. Consequently, the NDeS

model (29) provides accurate results.
To detect incorrect specifications in the proposed model, heteroscedasticity tests are

used to test the non-constant variance of random components [73]. The tests verify whether
any significant variables have been omitted from the mathematical model [74]. White’s
heteroscedasticity test and Breusch–Pagan’s heteroscedasticity test were used for testing.
For both tests, the null hypothesis H0 applies: no heteroscedasticity, as opposed to the
alternative hypothesis H1: heteroscedasticity present. The test statistic for White’s test
of heteroscedasticity is 15.0079. The null hypothesis is rejected if the value of White’s
test statistic is greater than the critical value χ2(20) at the corresponding confidence level
α. However, this is not the case, because χ2(20) = 31.41 > 15.0079. Consequently, the
null hypothesis H0 regarding the absence of heteroscedasticity is accepted. The Breusch–
Pagan test statistic for heteroscedasticity is 3.00616. The null hypothesis H0 is rejected
if the value of the Breusch–Pagan statistic is greater than the corresponding critical chi-
squared value χ2(5) at the chosen confidence level α. However, this is not the case because
χ2(5) = 11.07 > 3.00616. Therefore, we accept the null hypothesis (H0) of the absence of
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heteroscedasticity. Both tests confirmed the absence of heteroscedasticity, and thus the
variance of random components exhibits homoscedasticity, meaning that no significant
variable is omitted from the proposed model.

Figure 15. Comparison of measured and predicted nitrogen values according to model NDeS (29).

Multicollinearity testing is used to verify the suitability of the factors affecting the
amount of nitrogen in metal. In a multiple regression model, multicollinearity assesses
the extent to which two or more prognostic factors are correlated. If there is a high degree
of correlation, even a small change in the dataset could result in a significant change in
the estimated strength of the coefficient. However, multicollinearity does not reduce the
model’s overall predictive power and reliability, only affecting the calculations relating to
individual predictors [75]. Multicollinearity is assessed by the Variance Inflation Factor
(VIF) [76], whose values for the analyzed factors a1–a5 (Table 4) are provided in Table 19.
The minimum value is 1, with values above 10 indicating high multicollinearity.

Table 19. Results of the VIF test for the factors that influence the nitrogen content of desulphurized
pig iron.

Parameter Value

Amount of sulfur removed 3.184
Amount of blown nitrogen as carrier gas

for desulphurization mixture
1.127

Weight of pig iron after desulfurization 1.258
Amount of desulphurization mixture 1.089

Temperature difference of pig iron before
and after desulfurization

3.468

Time series extrapolation produces forecasts based on estimates of the parameters of a
specific mathematical model whose quality has been confirmed by various statistical tests.
Therefore, it can be expected that the resulting forecasts will not differ greatly from reality.
The accuracy of the forecasts is assessed using various average characteristics.

The Mean Absolute Error (MAE) is a measure of the average absolute deviation of
actual values from estimated (predicted) values. Following the substitution of the given



Appl. Sci. 2025, 15, 9561 25 of 46

Equation (24), the resulting statistic is found to be MAEDeS = 1.3374 × 10−10. Consequently,
it can be deduced that the Mean Absolute Error is negligible.

The Mean Percentage Error (MPE) expresses the degree of distortion. After substituting
into Equation (25), the result MPEDeS = −3.5785% was obtained. It can, therefore, be
concluded that the proposed model systematically overestimates reality, with the predicted
values being, on average, 3.5785% higher than the actual values.

The Mean Absolute Percentage Error (MAPE) is a statistical metric that calculates the
average magnitude of forecast errors as a percentage relative to actual values over the entire
forecast period. Following the substitution of the observed statistic into Equation (26), the
result is MAPEDeS = 16.5411%.

The accuracy of the NDeS model (29) is determined through the substitution of the
model’s parameters into Equation (27). Subsequently, Equation (30) can be established,
thereby determining the accuracy of the NDeS model, as outlined in Equation (31).

Model accuracy : NDeS = 100 − MAPEDeS (30)

Model accuracy: NDeS = 83.4589% (31)

4.2. Model for Predicting Nitrogen Content in Molten Crude Steel Before Tapping from BOF

Section 3.2 and Table 6 show the ranking of factors affecting the amount of dissolved
nitrogen in crude steel before it is tapped from the BOF. The results can be interpreted as
follows: The most significant factor causing increased nitrogen content in crude steel is the
total oxygen reblow time, which correlates very well with operational reality. The nitrogen
content of high-purity oxygen (oxygen purity level of 95%) can vary significantly, from
70 to 1250 ppm of nitrogen. Reblow is performed either due to an inadequate chemical
composition or a low temperature of the crude steel, and this increases the amount of
nitrogen dissolved in the metal. The content of manganese, phosphorus, and carbon relates
to the amount removed during the refining process. The greater the removal of these
elements during heat, the greater the nitrogen content of the crude steel, which is closely
related to the blowing time, amount of high-purity oxygen supplied, and intensity of
oxygen blowing. The effect of the amount of briquettes added on the increase in dissolved
nitrogen in the produced crude steel is related to its binder, molasses. Molasses is used
in the production of briquettes at a proportion of up to 10 wt.%. Sugar beet molasses
contains nitrogen in its structure and has the chemical formula C6H12NNaO3S [77]. Tapping
temperature affects the amount of nitrogen dissolved in crude steel. More nitrogen is
dissolved at higher tapping temperatures. This is because the solubility of nitrogen in
molten steel increases with temperature.

Based on Table 9, it can be observed that correct results were achieved using the OLS
method. The standard deviation of the dependent variable (0.000614) when compared to
the mean value of the dependent variable (0.002002) yielded a coefficient of variation of
approximately 0.31 (SD/Mean). This indicates that the variability of the dependent variable
is to a considerable extent governed, and it is estimated to account for approximately 31%
of its mean value.

As demonstrated in Table 1, the coefficient of determination, according to Cohen’s
distribution, manifests only moderate values. However, it is imperative to underscore the
non-stationary nature of data from integrated systems and the fact that these are operational
data, for which achieving average correlation coefficients is a substantial accomplishment.

The sum of squares of residuals is 0.000017. A low value indicates that the absolute
errors of the model are very small, which is a positive sign for the accuracy of predictions.

The F-test tests whether the null hypothesis H0 primarily applies, i.e., σ2
2 = σ2

1 ,
or if the alternative hypothesis applies, i.e., H1: σ2

2 ̸= σ2
1 . The critical value of the F-
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distribution for a significance level of 10% is Fcrit(7, 55) = 1.829. Since Fcrit(7, 55) < F(7, 55),
i.e., 1.829 < 2.326593, it can be concluded that the null hypothesis can be rejected, meaning
that the standard deviations of the datasets are 90% different from each other.

The Durbin–Watson statistic value of 2.000830 is almost ideal. A value close to 2.0 in-
dicates the absence of autocorrelation in the model residuals, thus supporting the null
hypothesis H0 concerning the absence of autocorrelation. This is a highly positive finding,
as it fulfils one of the fundamental assumptions of linear regression, namely, the indepen-
dence of errors. In Granger–Newbold’s comparison of spurious regression, it is possible to
conclude, on the basis of Equation (28), that, in this case, there is no indication of spurious
regression, because the value of the coefficient of determination R2 is lower than the value
of the DW test.

The augmented Dickey–Fuller test was applied to assess cointegration. This test
evaluates the null hypothesis, H0: the variables are not cointegrated, against the alternative
hypothesis, H1: the variables are cointegrated. Figure 16 presents the results of this
cointegration analysis, carried out using the statistical tool Gretl 2025a.

 

Figure 16. Output for the augmented Dickey–Fuller test of cointegration for model NBOF.

As depicted in Figure 16, the p-value is 0.01596, which is below the significance level
(α = 0.05), leading us to reject the null hypothesis (H0) in favor of the alternative (H1).
Consequently, the series are cointegrated: each is non-stationary on its own, but their
linear combination is stationary. Accordingly, spurious regression cannot occur in the
mathematical model. Moreover, the markedly negative value of tau_c(8) = −5.61958 offers
strong evidence for rejecting the null hypothesis.

The test parameters demonstrate the suitability of the configuration of variables listed
in Table 8. Equation (23) can be used to create a mathematical model for predicting the
nitrogen content of raw steel before tapping it from the basic oxygen furnace. The resulting
model takes the form of Equation (32).

NBOF = −0.0137962 + 7.06124 × 10−6 · B1 − 0.000306035 · B2 − 0.0469186 · B3

− 0.00499063 · B4 − 3.44051 × 10−8 · B5 + 1.04457 × 10−5 · B6

− 3.96352 × 10−7 · B7

(32)

where:
NBOF: predicted nitrogen content in crude steel before tapping from BOF;
B1: oxygen reblow time [s];
B2: manganese content in crude steel [%];
B3: phosphorus content in crude steel [%];
B4: carbon content in crude steel [%];
B5: briquettes [kg];
B6: temperature of tapping steel [◦C];
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B7: oxygen blowing time [s].

The validity ranges of the model (32) are exhibited in Table 20.

Table 20. Validity range of the NBOF model (32) for predicting the amount of nitrogen content in
crude steel prior to tapping from BOF.

Parameter Range of Values

Oxygen reblow time [s] 0–100
Manganese content in crude steel [%] 0.060–0.244
Phosphorus content in crude steel [%] 0.005–0.015

Carbon content in crude steel [%] 0.026–0.105
Briquettes [kg] 0–3260

Temperature of tapping steel [◦C] 1620–1685
Oxygen flowing time [s] 1601–2322

The proposed NBOF model (32) followed the same rigorous diagnostic process as the
NDeS model (29). This process involved the use of precise testing analyses and graphical
representations. The evaluation of the model is grounded in the assessment of residuals.
Residuals serve to illustrate the discrepancy between the measured value and the predicted
value of the amount of nitrogen in the crude steel prior to tapping. As illustrated in
Figure 17a, the residual variance is presented graphically, while Figure 17b offers a residual
analysis with respect to the timeline.

(a) (b)

Figure 17. (a) Residual dispersion for the processed dataset and model NBOF (32); (b) the residual
course in the timeline for the processed dataset and model NBOF (32).

As illustrated in Figure 17a, the residual deviations are randomly dispersed around
zero. Furthermore, the graph does not exhibit any discernible trend or pattern. Con-
sequently, the model is well designed and meets the assumptions. As demonstrated in
Figure 17b, the sign of the residual values undergoes a substantial alteration over the
course of the experiment. This finding suggests that the designed model generally does
not significantly overestimate or underestimate the calculated nitrogen values in metal
when making predictions. The calculation of the sum of squares of residuals (Table 9)
yields a value of 0.000017, which corroborates this viewpoint, as it is proximate to zero.
This finding—that is, the normality of the residuals—can be seen in Figure 18, where the
points (red dots) can be seen to be arranged quite close to the blue line. This arrangement
demonstrates a normal distribution of the residuals. This finding is also confirmed by the
histogram in Figure 19.
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Figure 18. Graph of the normal distribution of residuals for the model NBOF (32).

Figure 19. Histogram of the normal distribution of residuals for model NBOF (32).

As illustrated in Figure 20, a graphical representation is provided of the comparison be-
tween measured and predicted results using the NBOF model (32). The red curve represents
the measured values, whilst the blue curve denotes the predicted values of nitrogen content
in crude steel prior to tapping. The green curves represent the 95% confidence interval.
The standard deviation of the residuals is calculated to be 0.000548932. The observed value,
which is of negligible magnitude, signifies that there is minimal discrepancy between the
two datasets, i.e., the measured and predicted ones, respectively. Consequently, it can be
posited that the NBOF model (32) provides accurate results.

The White and Breusch–Pagan tests were used to assess the presence of heteroscedastic-
ity, and to verify the null hypothesis (H0), which assumes the absence of heteroscedasticity,
and the alternative hypothesis (H1), which assumes its presence. The White test yielded a
value of 34.3269. The null hypothesis is rejected if the value of the test statistic is greater than
the corresponding critical value, χ2(34), at the chosen confidence level, α. However, this is
not the case because χ2(34) = 48.602 > 34.3269. Therefore, in White’s test, the null hypothesis
of no heteroscedasticity is accepted. The Breusch–Pagan test statistic for heteroscedasticity
is 8.66205. The null hypothesis (H0) is rejected if the value of the Breusch–Pagan test
statistic is greater than the corresponding critical χ2(7) value at the chosen confidence level
α. However, this is also not the case here, as χ2(7) = 14.067 > 8.66205. According to the
Breusch–Pagan statistic, the null hypothesis (H0): no heteroscedasticity is accepted.
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Figure 20. Comparison of measured and predicted nitrogen values according to model NBOF (32).

As part of the solution to multicollinearity, the variance inflation factor (VIF) is evalu-
ated. The values for the analyzed factors b1–b7 (Table 8) are shown in Table 21. The test
results indicate low to no multicollinearity (1 is the minimal value). This indicates that the
independent variables are well separated, meaning that each variable contributes unique
information to the model. Based on the VIF test, the proposed NBOF (32) model also shows
stability, with reliable regression coefficients that are unaffected by excessive correlation
between variables.

Table 21. Results of the VIF test for the factors that influence the nitrogen content of crude steel prior
to tapping.

Parameter Value

Oxygen reblow time 1.166
Manganese content in crude steel 2.609
Phosphorus content in crude steel 2.540

Carbon content in crude steel 1.582
Briquettes 1.184

Temperature of tapping steel 1.550
Oxygen flowing time 1.075

The accuracy of the NBOF model (32) can be evaluated as follows. The Mean Absolute
Error (MAE) was calculated using Equation (24), and the result is MAEBOF = 1.3606 × 10−10.
It can therefore be concluded that the average absolute error is very small.

The Mean Percentage Error (MPE) was computed based on Equation (25), and, after
substituting into the relationship, the result is MPEBOF = −6.1515%. It can therefore be
concluded that reality is systematically overestimated by the proposed model, with the
predicted values being 6.1515% higher than the actual values on average.
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The average size of forecast errors compared to actual values across the entire forecast
period is expressed using the Mean Absolute Percentage Error (MAPE). Substituting into
Equation (26), we obtain the result MAPEBOF = 22.7696%. The accuracy of the NBOF

model (32) can be determined by substituting the model’s parameters into Equation (27).
This establishes Equation (33), which determines the accuracy of the NBOF model as
outlined in Equation (34).

Model accuracy : NBOF = 100 − MAPEBOF (33)

Model accuracy: NBOF = 77.2304% (34)

4.3. Model for Predicting Nitrogen Content in Molten Steel at the Beginning of
Secondary Metallurgy

It has been shown in Section 3.3 (Table 10) that, as the tapping angle is increased,
the nitrogen content in molten steel is reduced. This dependency is associated with the
length of the tapping steel stream. With a smaller BOF vessel tilt, the length of the tapped
steel stream is greater, meaning more tapped steel comes into contact with the atmosphere,
creating a larger reaction area. As the converter tilt increases, the steel flowing into the
ladle is straighter and shorter, resulting in a smaller reaction surface. The duration of the
tapping time is also found to be significantly related to the length of time the steel is in
contact with air (79% of air consists of nitrogen). It has been demonstrated that an increase
in the duration of the tapping time results in an increase in the nitrogen content dissolved
in the steel, due to the prolongation of the steel’s exposure to the air. At the beginning
of secondary metallurgy, silicon in steel comes from the FeSi ferroalloy. This ferroalloy
is added to steel only after a carbonized deoxidizer or carburizing coke is added. This
ensures the boiling of the steel and the generation of a large amount of CO bubbles, which
subsequently generate CO2. This reduces the amount of active oxygen at the metal–gas
interface, enabling the metal to become supersaturated with atmospheric nitrogen during
intense steel boiling. After FeSi is added, the silicon also reacts with the active oxygen
in the metal to form SiO2, which increases the nitrogen transfer coefficient into the metal.
Depending on the manufacturer, FeSi contains approximately 80–150 ppm of nitrogen.
Moreover, Wagner’s interaction coefficient for the Fe–Si–N system is eN

Si = 0.047. A positive
value indicates that silicon increases the activity coefficient of nitrogen and thus also the
equilibrium solubility of nitrogen in molten steel. At the beginning of secondary metallurgy
(SM), manganese comes from both the crude steel produced in the BOF and the FeMn
aff. alloy added during the SM process. Manganese increases the solubility of nitrogen
in steel. Similarly, the FeMn aff. ferroalloy contains 40–80 ppm of nitrogen, depending
on the supplier. Wagner’s interaction coefficient for the Fe–Mn–N system is eN

Mn = 0.013.
A positive value indicates that manganese increases the activity coefficient of nitrogen
and thus also the equilibrium solubility of nitrogen in molten steel. Oxygen is a highly
active element on the surface of metal and occupies active sites at the metal–gas phase
interface. Therefore, oxygen in crude steel slows down the dissolution of nitrogen in the
metal. Adding a large amount of aluminum in the form of blocks significantly reduces
the activity of oxygen in the metal. This reduces the amount of oxygen at the metal–gas
interface and increases the nitrogen transfer coefficient, allowing nitrogen to dissolve into
the metal and increasing its content. This is the reason why fully-killed steels have a
higher nitrogen content than semi-killed steels, as deoxidation removes more oxygen and
requires more added aluminum as a deoxidizer. During this process, the metal is mixed
intensively and comes into contact with air. This is why the nitrogen that enters the metal
during aluminum-based deoxidation comes from the atmosphere. For steel grades that
require a very low final nitrogen value, deoxidation using aluminum is performed during
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processing at SM with chopped aluminum wire rather than aluminum blocks during
tapping from BOF. The efficiency of deoxidation using chopped aluminum wire is 85–92%.
Wagner’s interaction coefficient for the Fe–Al–N system is eN

Al = −0.017. A negative value
indicates that aluminium decreases the activity coefficient of nitrogen, thereby reducing the
equilibrium solubility of nitrogen in molten steel. Therefore, adding 0.03% aluminium to
the metal reduces the equilibrium nitrogen content by approximately 3–4 ppm at 1600 ◦C.

The results presented in Table 13 confirm the validity of the ordinary least squares
(OLS) estimation approach. The coefficient of variation, calculated as the ratio of the
standard deviation (0.000888) to the mean value (0.003160) of the dependent variable,
equals approximately 0.28 (SD/Mean). This indicates that the dispersion of the dependent
variable is substantially controlled, with the variability representing approximately 28% of
the mean value.

As shown in Table 1, according to Cohen’s distribution, the coefficient of determination
only exhibits moderate values. However, it is important to emphasize the non-stationary
nature of the data from integrated systems, and the fact that these are operational data for
which achieving average correlation coefficients is a significant achievement.

The sum of the squares of the residuals is 0.000035. This low value indicates that the
model’s absolute errors are very small, suggesting that predictions will be accurate.

The F-test determines whether the null hypothesis (H0: σ2
2 = σ2

1 ) or the alternative hy-
pothesis (H1: σ2

2 ̸= σ2
1 ) applies. The critical value of the F-distribution for a 10% significance

level is Fcrit(7, 67) = 1.808. As Fcrit(7, 67) < F(7, 67), i.e., 1.808 < 6.453, the null hypothesis
can be rejected. This means that the standard deviations of the datasets are 90% different
from each other.

The Durbin–Watson statistic of 1.872243 (Table 13) provides evidence for the absence
of autocorrelation among model residuals, thereby supporting the null hypothesis H0

regarding the independence of error terms. This finding is particularly significant as it
satisfies a fundamental assumption underlying linear regression analysis, specifically the
requirement for error independence. According to the Granger–Newbold criterion in
Equation (28), no spurious regression is detected since R2 < DW, confirming model validity.

The augmented Dickey–Fuller test was employed to examine cointegration relation-
ships among the variables. The test framework evaluates the null hypothesis H0 (absence
of cointegration) against the alternative hypothesis H1 (presence of cointegration). The
cointegration analysis results, conducted using the statistical software Gretl 2025a, are
presented in Figure 21.

 

Figure 21. Output for the augmented Dickey–Fuller test of cointegration for model NSMB.

As illustrated in Figure 21, the p-value is 0.003933, which is significantly below the
significance level (α = 0.05). This indicates that the null hypothesis (H0) is rejected and
the alternative (H1) is accepted. Consequently, the series are cointegrated: each is non-
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stationary on its own, but their linear combination is stationary and spurious regres-
sion is precluded in the mathematical model. Furthermore, the markedly negative value
of tau_c(8) = −6.0245 provides substantial evidence to support the rejection of the null
hypothesis—series are cointegrated.

The test parameters demonstrate the suitability of the configuration of variables listed
in Table 10. Equation (23) can be utilized to formulate a mathematical model for predicting
the nitrogen content in steel at the beginning of secondary metallurgy. The resulting model
assumes Equation (35).

NSMB = 0.00982567 − 7.89409 × 10−5 · C1 + 0.00368566 · C2 − 0.00987549 · C3 +
0.00442257 · C4 − 0.00140863 · C5 + 6.15271 × 10−7 · C6 +
6.28702 × 10−6 · C7

(35)

where:
NSMB: predicted nitrogen content in steel at the beginning of secondary metallurgy,
C1: tapping angle [◦];
C2: silicon in molten steel prior to argon bubbling [%];
C3: total aluminum prior to argon bubbling [%];
C4: carbon in molten steel prior to argon bubbling [%];
C5: manganese in molten steel prior to argon bubbling [%];
C6: tapping time [s];
C7: added aluminum blocks [kg].

The validity ranges of the model (35) are illustrated in Table 22.

Table 22. Validity range of the NSMB model (35) for predicting the amount of nitrogen content in steel
at the beginning of secondary metallurgy.

Parameter Range of Values

Tapping angle [◦] 98–117
Silicon in molten steel prior to argon bubbling [%] 0–0.403

Total aluminum prior to argon bubbling [%] 0.006–0.056
Carbon in molten steel prior to argon bubbling [%] 0.026–0.171

Manganese in molten steel prior to argon bubbling [%] 0.174–1.290
Tapping time [s] 249–683

Added aluminum blocks [kg] 200–350

The proposed NSMB model (35) was subjected to the same rigorous diagnostic process
as the NDeS model (29) and NBOF model (32). This process involved precise testing, analysis,
and graphical interpretation. The model’s evaluation is based on the analysis of residuals.
Residuals illustrate the discrepancy between the measured and predicted amounts of
nitrogen in the crude steel prior to tapping. Figure 22a illustrates the residual variance
graphically, while Figure 22b provides a residual analysis over time.

As depicted in Figure 22a, the residual deviations exhibit a random distribution around
zero without any observable systematic trend or pattern. This distribution confirms that
the model is appropriately specified and satisfies the underlying statistical assumptions.
As shown in Figure 22b, the sign of the residual values changes substantially over the
course of the experiment. This suggests that the designed model generally does not
significantly overestimate or underestimate the calculated nitrogen values in metal when
making predictions. Calculating the sum of squares of residuals (Table 13) yields a value
of 0.000035, which corroborates this viewpoint as it is close to zero. Figure 23 illustrates
this finding, showing that the points (red dots) are arranged quite close to the blue line,
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indicating the normality of the residuals. This demonstrates a normal distribution of the
residuals. The histogram in Figure 24 also confirms this finding.

(a) (b)

Figure 22. (a) Residual dispersion for the processed dataset and model NSMB (35); (b) the residual
course in the timeline for the processed dataset and model NSMB (35).

Figure 23. Graph of the normal distribution of residuals for the model NSMB (35).

Figure 24. Histogram of the normal distribution of residuals for model NSMB (35).
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Figure 25 presents a comparative analysis of measured versus predicted values gener-
ated by the NSMB model (35). The graphical representation displays measured values (red
curve), predicted nitrogen concentrations in crude steel prior to tapping (blue curve), and
the 95% confidence interval (green curves). The calculated standard deviation of residuals
is 0.000721066, indicating minimal discrepancy between observed and predicted datasets.
This negligible deviation demonstrates that the NSMB model (35) exhibits satisfactory
predictive accuracy.

Figure 25. Comparison of measured and predicted nitrogen values according to model NSMB (35).

The White and Breusch–Pagan tests were employed to evaluate the presence of het-
eroscedasticity and to verify the null hypothesis (H0), which assumes the absence of
heteroscedasticity, and the alternative hypothesis (H1), which assumes its presence. The
White test yielded a value of 42.766. The null hypothesis is to be rejected if the value of the
test statistic is greater than the corresponding critical value, χ2(35), at the chosen confidence
level, α = 0.05. However, this is not the case, because χ2(35) = 49,802 > 42,766. Consequently,
in White’s test, the null hypothesis of no heteroscedasticity is accepted. The Breusch–Pagan
test statistic for heteroscedasticity is 4.94841. The null hypothesis (H0) is rejected if the
value of the Breusch–Pagan test statistic is greater than the corresponding critical χ2(7)
value at the chosen confidence level. However, this is not applicable in this instance, as
χ2(7) = 14.067 > 4.94841. It is evident that, in accordance with the Breusch–Pagan statistic,
the null hypothesis (H0) is accepted, namely that there is no heteroscedasticity.

As part of the solution to multicollinearity, the variance inflation factor (VIF) is eval-
uated. The values for the analyzed factors c1–c7 (Table 12) are shown in Table 23. The
VIF values indicate that the regression model is relatively favorable. Those that do not
exhibit multicollinearity have values close to the ideal of 1, while variables such as carbon,
manganese, and silicon in steel exhibit slight multicollinearity but do not exceed the critical
VIF value of 10. The VIF values for carbon, manganese, and silicon indicate their correlated
behavior. However, their higher VIF test values are not a shortcoming of the model but
rather reflect actual metallurgical relationships. This correlation stems from their shared
roles in steelmaking processes as they naturally form part of the chemical composition of
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both raw iron and steel. Due to their similar affinity for oxygen at high temperatures, they
react similarly with oxygen, are subject to similar thermodynamic laws in steel production
and processing, and influence each other’s final properties. In the context of steel finishing
in secondary metallurgy, this correlation is both expected and technologically justified,
confirming the accuracy of the statistical analysis observations. Intensive mixing of the
steel during tapping from the Basic Oxygen Furnace (BOF), the boiling of the steel at the
bottom of the ladle, and the addition of aluminum to deoxidize the steel significantly reduce
the amount of nitrogen dissolved in the metal by transporting nitrogen to the metal–slag
interface. In secondary steel metallurgy, the correlation between carbon, manganese, and
silicon dissolved in steel is a natural phenomenon with fundamental practical significance.
Understanding and utilizing this correlation enables more efficient process control, im-
proves product quality in terms of nitrogen content, and generates economic savings. For
modern steel producers, this correlation is an invaluable tool for optimizing production
processes and ensuring consistent steel quality. Due to this, each variable provides unique
information to the NSMB model (35).

Table 23. Results of the VIF test for the factors that influence the nitrogen content in steel at the
beginning of the secondary steelmaking.

Parameter Value

Tapping angle 1.102
Silicon in molten steel prior to argon bubbling 4.056

Total aluminum prior to argon bubbling 1.133
Carbon in molten steel prior to argon bubbling 6.466

Manganese in molten steel prior to argon bubbling 6.760
Tapping time 1.289

Added aluminum blocks 1.211

The accuracy of the NSMB model can be evaluated as follows: The Mean Absolute
Error (MAE) was calculated using Equation (24), giving a result of MAESMB = 2.407 × 10−11.
Therefore, it can be concluded that the average absolute error is very negligible.

The mean percentage error (MPE) was computed based on Equation (25). After
substituting this into the relationship, the result is MPESMB = −5.3582%. Therefore, it
can be concluded that the proposed model systematically overestimates reality, with the
predicted values being, on average, 5.3582% higher than the actual values.

The Mean Absolute Percentage Error (MAPE) is used to express the average size of
forecast errors compared to actual values across the entire forecast period. Substituting this
into Equation (26) gives MAPESMB = 20.0341%. The accuracy of the NSMB model can be
determined by substituting its parameters into Equation (27). This establishes Equation (36),
which determines the accuracy of the NBOF model, as outlined in Equation (37).

Model accuracy : NSMB = 100 − MAPESMB (36)

Model accuracy: NSMB = 79.9659% (37)

4.4. Model for Predicting Nitrogen Content in Molten Steel at the End of Secondary Metallurgy

The most significant factors affecting the amount of nitrogen dissolved in molten
steel (see Table 14) can be described as follows: The solubility of nitrogen in liquid steel
is governed by Sievert’s law, whereby the equilibrium solubility of nitrogen in steel in-
creases with temperature. Despite thermodynamics predicting higher nitrogen solubility at
higher temperatures, industrial observations demonstrate a contrary trend, whereby the
ultimate nitrogen content in steel decreases with increasing temperature during secondary
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metallurgy. This phenomenon can be attributed to the predominance of kinetic factors over
thermodynamic equilibrium. At the beginning of the SM process, a significant number
of CO bubbles are generated in the ladle, thereby assisting in the mixing of the melt. It
has been demonstrated that at elevated temperatures, there is an increase in the volume of
CO bubbles, and that the reaction [C] + [O] = {CO} proceeds at a faster rate [78]. However,
at this stage, the elevated presence of surface–active elements, such as oxygen and sulfur,
inhibits the process of rapid desulfurization. In the later stages of SM, when the generation
of CO is reduced due to the depletion of reagents in the metal, argon assumes the role
of the mixing agent. However, it has been demonstrated that, at elevated temperatures,
the inhibitory effect of surface–active elements is reduced [79]. It has been demonstrated
that, by reducing the amount of oxygen in the metal, it is possible to effectively remove
nitrogen from the metal using the residual amount of CO bubbles in combination with
argon [80]. The argon is fed into the metal through a porous plug located at the bottom of
the casting ladle. As the temperature of the metal is increased, the viscosity of the steel is
also reduced, thus facilitating the movement of CO and Ar bubbles. Experimental evidence
has demonstrated that elevating the temperature from 1550 ◦C to 1620 ◦C enhances the
saturation solubility of nitrogen, whereas concurrently increasing the rate constant for
nitrogen removal and the mass transfer coefficient has also been observed [81]. During the
process of deoxidation of steel tapped from BOF, a carbonized deoxidizer or carburizing
coke is added. This process ensures that the steel boils and a large number of CO bubbles
are generated. Subsequently, CO2 is created. This reduces the amount of active oxygen at
the metal–gas interface, enabling the metal to become supersaturated with atmospheric
nitrogen during intense steel boiling. Adding FeMn aff. (not nitrogenous FeMnN) increases
the nitrogen content of steel. The nitrogen in FeMn comes from atmospheric nitrogen that
comes into contact with molten FeMn during the production process. Carousel tapping of
FeMn creates a large reaction surface between the ferroalloy and the atmosphere, causing
the absorption of large amounts of atmospheric nitrogen into the FeMn. The ferroalloy
FeMn aff. has been found to contain nitrogen at concentrations ranging from 40 to 80 ppm,
with variations depending on the supplier. The interaction coefficient for the Fe–Mn–N sys-
tem, as determined by Wagner, is eN

Mn = 0.013. A positive value indicates that manganese
increases the activity coefficient of nitrogen, thus increasing the equilibrium solubility of
nitrogen in molten steel. The final manganese content at the end of secondary metallurgy
is closely related to the amount of FeMn added during the secondary metallurgy stage of
steel processing.

The results presented in Table 17 confirm the validity of the ordinary least squares
(OLS) estimation approach. The coefficient of variation, calculated as the ratio of the
standard deviation (0.000790) to the mean value (0.003270) of the dependent variable,
equals approximately 0.24 (SD/Mean). Consequently, the dataset displays low relative
dispersion, indicating that variability constitutes only 24% of the central tendency. This
supports the ordinary least squares assumptions, thereby confirming the methodological
soundness of the OLS estimator and validating the reliability of the inferences derived from
Table 17.

In the context of analyzing industrial data from steel production, the value of
R2 = 0.241736 can be considered acceptable. Industrial processes are characterized by
high variability and complex interactions between process variables. Consequently, even a
low value of R2 can be informative and useful, especially if the regression coefficients are
statistically significant and the result of the coefficient of determination can, therefore, be
considered significant in terms of the nature of the data being processed.
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The sum of the squares of the residuals is 0.000033. It is evident that the low value
indicates that the model’s absolute errors are minimal, thereby suggesting that predictions
will be accurate.

The F-test is a statistical procedure used to determine whether the null hypothesis
(H0: σ2

2 = σ2
1 ) or the alternative hypothesis (H1: σ2

2 ̸= σ2
1 ) applies. The critical value of the

F-distribution for a 10% significance level is Fcrit(4, 67) = 2.031. As Fcrit(4, 67) < F(4, 67),
i.e., 2.031 < 2.682089, the null hypothesis can be rejected. This indicates that the standard
deviations of the datasets differ by 90%.

With a value of 2.029951, the Durbin–Watson statistic is almost ideal. A value close
to 2.0 indicates an absence of autocorrelation in the model residuals, thus supporting the
null hypothesis (H0) of an absence of autocorrelation. This is a highly positive finding as it
fulfils one of the fundamental assumptions of linear regression: the independence of errors.
According to Granger and Newbold’s comparison of spurious regression, the relation in
Equation (28) suggests that there is no indication of spurious regression in this case, as the
value of the coefficient of determination R2 is lower than the DW test value.

The augmented Dickey–Fuller test was used to analyze the cointegration relationships
between the variables. This test evaluates the null hypothesis (H0: absence of cointegration)
against the alternative hypothesis (H1: presence of cointegration). The results of the
cointegration analysis, which was conducted using the Gretl 2025a statistical software, are
presented in Figure 26.

 

Figure 26. Output for the augmented Dickey–Fuller test of cointegration for model NSME.

As shown in Figure 26, the p-value is 0.03379, which is below the significance level
α = 0.05. This indicates that the null hypothesis (H0) is rejected, and the alternative hy-
pothesis (H1) is accepted. Consequently, the series are cointegrated: while each series
is non-stationary on its own, their linear combination is stationary. Therefore, spurious
regression can be ruled out in the mathematical model. Furthermore, the markedly negative
value of tau_c(5) = −4.559 provides substantial evidence in support of rejecting the null
hypothesis. For this reason, the series are cointegrated.

The test parameters demonstrate the suitability of the configuration of variables
listed in Table 14. Equation (23) can be employed to formulate a mathematical model for
predicting the nitrogen content in steel at the conclusion of secondary metallurgy. The
resulting model assumes the form of Equation (38).

NSME = 0.0257714 − 1.45992 × 10−5 · D1 + 0.0126950 · D2 + 3.08438 × 10−6 · D3

− 0.00153525 · D4
(38)

where:
NSME: predicted nitrogen content in steel at the end of secondary metallurgy;
D1: steel temperature at the end of SM [◦C];
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D2: final carbon in molten steel [%];
D3: addition of FeMn aff. during SM [%];
D4: final manganese in molten steel [%].

The validity ranges of the model (38) are illustrated in Table 24.

Table 24. Validity range of the NSME model (38) for predicting the amount of nitrogen content in steel
at the end of secondary metallurgy.

Parameter Range of Values

Steel temperature at the end of SM [◦C] 1558–1597
Final carbon in molten steel [%] 0.039–0.195

Addition of FeMn aff. during SM [%] 0–184
Final manganese in molten steel [%] 0.218–1.380

The proposed NSME model (38) was subjected to the same rigorous diagnostic process
as previous models. The process entailed methodical testing, thorough analysis, and
graphical interpretation. The evaluation of the model is based on an analysis of residuals.
As illustrated in Figure 27a, the residual variance is presented graphically, while Figure 27b
provides a residual analysis over time.

(a) (b)

Figure 27. (a) Residual dispersion for the processed dataset and model NSME (38); (b) the residual
course in the timeline for the processed dataset and model NSME (38).

The distribution of residuals in Figure 27a suggests that the random homoscedasticity
assumption is valid, which is favorable for the model’s reliability. However, the time series
in Figure 27b reveals potential issues of serial correlation and systematic sampling (around
observations 15–20), though testing for autocorrelation of residuals does not confirm these.
It can therefore be concluded that the model is adequately specified.

Both diagnostic plots (Figures 28 and 29) suggest that the residuals exhibit an approxi-
mately normal distribution, with slight deviations from perfect normality, particularly at
extreme values and at the peak of the distribution. For practical purposes, however, we can
consider the assumption of residual normality to be sufficiently satisfied.

Figure 30 shows a comparison of the measured and predicted values generated by the
NSME model (38). The graph shows the measured values (red curve), the predicted nitrogen
concentrations in crude steel prior to tapping (blue curve), and the 95% confidence interval
(green curves). The calculated standard deviation of residuals is 0.00070872, indicating
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a minimal discrepancy between the observed and predicted datasets. This negligible
deviation shows that the NSME model (38) has satisfactory predictive accuracy.

Figure 28. Graph of the normal distribution of residuals for the model NSME (38).

Figure 29. Histogram of the normal distribution of residuals for model NSME (38).

The White and Breusch–Pagan tests were employed to evaluate the presence of het-
eroscedasticity and to verify the null hypothesis (H0), which assumes the absence of
heteroscedasticity, and the alternative hypothesis (H1), which assumes its presence. The
White test yielded a value of 15.7133. The null hypothesis is to be rejected if the value of the
test statistic is greater than the corresponding critical value, χ2(14), at the chosen confidence
level, α = 0.05. However, this would not be the case because χ2(14) = 23.685 > 15.7133.
Due to this, in White’s test, the null hypothesis of no heteroscedasticity is accepted. The
Breusch–Pagan test statistic for heteroscedasticity is 3.90746. The null hypothesis (H0) is
rejected if the value of the Breusch–Pagan test statistic is greater than the corresponding
critical χ2(4) value at the chosen confidence level. However, this is not applicable in this
instance, as χ2(4) = 9.488 > 3.90746. It is evident that, in accordance with the Breusch–Pagan
statistic, the null hypothesis (H0) is accepted, namely, that there is no heteroscedasticity.

The variance inflation factor (VIF) is evaluated as part of the solution to multicollinear-
ity. The VIF values for the analyzed factors d1–d4 (Table 16) are shown in Table 25. These
values indicate that the regression model is relatively favorable. The resulting VIF statistics
indicate either no multicollinearity (values around 1) or slightly increased multicollinearity
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(values around 6). However, all values are below the critical threshold of 10, indicating that
serious multicollinearity problems do not threaten the model. The analysis of VIF values
confirms the statistical robustness of the regression model. Higher values for carbon and
manganese are technologically justified by the chemical dependence of these elements in
steelmaking processes. Therefore, the model can be considered suitable for further analysis
without the need to eliminate variables or make further structural adjustments. Because of
this, each variable provides unique information to the NSME model (38).

Figure 30. Comparison of measured and predicted nitrogen values according to model NSME (38).

Table 25. Results of the VIF test for the factors that influence the nitrogen content in steel at the end
of the secondary steelmaking.

Parameter Value

Steel temperature at the end of SM [◦C] 1.665
Final carbon in molten steel [%] 6.103

Addition of FeMn aff. during SM [%] 1.009
Final manganese in molten steel [%] 5.867

The accuracy of the NSMB model can be evaluated as follows: The Mean Absolute
Error (MAE) was calculated using Equation (24), giving a result of MAESME = 0.00056649.
Therefore, it can be concluded that the average absolute error is very small.

The mean percentage error (MPE) was computed based on Equation (25). After
substituting this into the relationship, the result is MPESME = −5.6189%. Consequently,
it can be deduced that the proposed model systematically overestimates reality, with the
predicted values being, on average, 5.6189% higher than the actual values.

The Mean Absolute Percentage Error (MAPE) is used to express the average size of
forecast errors compared to actual values across the entire forecast period. Substituting
into Equation (26) yields MAPESME = 19.6271%. The accuracy of the NSME model can be
determined by substituting its parameters into Equation (27). This establishes Equation (39),
which determines the accuracy of the NSME model, as outlined in Equation (40).

Model accuracy : NSME = 100 − MAPESME (39)
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Model accuracy: NSME = 80.3729% (40)

5. Conclusions
The presented research introduces a comprehensive system of predictive models for

nitrogen content control in steel across individual production stages in the basic oxygen
furnace process. Four specialized mathematical models based on the Ordinary Least
Squares (OLS) method were successfully developed, covering key technological stages:
pig iron desulfurization (NDeS), crude steel before tapping from BOF (NBOF), beginning of
secondary metallurgy (NSMB), and end of secondary metallurgy (NSME).

The results demonstrate that the proposed models achieve satisfactory predictive
accuracy with the following values: NDeS = 83.46%, NBOF = 77.23%, NSMB = 79.97%, and
NSME = 80.37%. A hierarchy of factors influencing nitrogen content was identified for each
stage, revealing that the most significant factors vary depending on the technological phase
of production.

The acquired values were then subjected to a series of verification methods, including
a heteroscedasticity test, a normality test, an autocorrelation test, a collinearity test, and a
graphical examination of the distribution of residuals. In order to verify the accuracy of
the proposed model using modern regression analysis, econometric cointegration analysis
was also applied. All algorithms and methodologies that were subjected to rigorous
testing during the steel production and processing phases that were monitored were
found to provide conclusions that serve to confirm the proposed models for predicting
nitrogen in metal. Consequently, it can be concluded that the results obtained from the
proposed prediction formulas are reliable within the calculated accuracy of the model and
boundary conditions.

The data being exclusively sourced from U. S. Steel Košice, Slovakia, means that the
developed models reflect the unique technological conditions, raw material characteristics,
and operational procedures specific to this facility. Through effective knowledge transfer
and subsequent integration into process control systems, these models could facilitate
initiative-taking parameter optimization while reducing dependence on laboratory testing
times, thereby preventing excessive nitrogen content in the final steel products.

The proposed models are designed to serve as a practical tool for predicting nitrogen
values in metal at specific production stages. This has the potential to enhance the efficiency
of the production process and reduce the costs associated with chemical analysis of metal
for the presence of nitrogen. The models created are valid within the specified ranges of
values for individual parameters (Tables 18, 20, 22, and 24), which also correspond to the
prescribed values of the chemical composition of the analyses steel grades, whose chemical
composition is given in Section 2. In order to enhance the accuracy and robustness of
predictive models, the following recommendations are proposed: the implementation of
advanced machine learning algorithms, such as neural networks, random forest, or support
vector machines, which have the capacity to better capture nonlinear relationships between
variables; and the expansion of the dataset with additional operational parameters and
longer time series, in order to increase statistical significance.
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Nomenclature
The following abbreviations are used in this manuscript:

KN Equilibrium constant of reaction [Pa−1/2]
aN Activity of elemental nitrogen dissolved in metal [−]
fN Activity coefficient of elemental nitrogen dissolved in metal [−]
pN2 Partial pressure of gas in molecular form in a gaseous atmosphere above molten metal [Pa]
[%N] Equilibrium concentration of elemental nitrogen dissolved in metal [wt.%]
C Constant that depends on the given gas CN3− = 6.01 · 10−13[J.K−1]
∆H Heat effect of dissolving 1 mole of gas [J.mol−1]
k Boltzmann constant k = (1.380658 ± 0.000012) · 10–23 [J.K–1]
T Absolute temperature [K]
D Diffusion coefficient [m2.s−1]
δ Thickness of the metal diffusion layer (Nernst diffusion layer) [m]
S Surface of the gas-melt phase interface [m2]
[N]srfc Nitrogen concentration in the surface layer of the melt [mol.m−3]
[N]vol Nitrogen concentration in the melt volume [mol.m−3]
t Time [s]
A Size of the gas bubble surface [m2]
V Gas bubble volume [m3]
C[N]eq.

Equilibrium nitrogen concentration [wt.%]

C[N] Nitrogen concentration [wt.%].
k Mass transfer coefficient [m2.s−1]
β Nitrogen dissolution rate constant
n Number of observations
X, Y Quantities that can be written as xi and yi, where i = 1, 2, 3, . . ., n,
x, y Average values of variables x and y
sx, sy Standard deviation of variables x and y
s2

x|y, s2
y|x Number of parameters to be measured

s2
x, s2

y Parameters that can be written as xi and yi and in this case i = 1, 2, 3, . . ., n
Nn Theoretical, predicted, nth balanced value of the explained variable N (nitrogen)
z0 Constant/Intercept
z1–zn Coefficient of variable
Z1–Zn Value of an independent variable
et Residuals (difference between measured and calculated values)
yt Measured monitored (dependent) variable

Nstage
Identification of a model for predicting the amount of nitrogen in molten metal during
individual stages of steel production
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Appendix A
The following charts (Figure A1a–d) are intended to provide a clear visual representa-

tion of the models’ deployment in the specific phases of the BOF production route.

(a) (b)

(c) (d)

Figure A1. Flow charts of model deployment in specific phases of BOF production cycle. (a) De-
ployment of NDeS model after desulfurization of molten pig iron; (b) deployment of NBOF model
prior to tapping from BOF; (c) deployment of NSMB model at the beginning of secondary metallurgy;
(d) deployment of NSME model at the end of secondary metallurgy.
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